产品中心
首页>产品中心>污水处理设备>畜禽养殖污水处理设备>大型养鹅场污水处理设备公司

大型养鹅场污水处理设备公司

大型养鹅场污水处理设备公司
大型养鹅场污水处理设备公司

大型养鹅场污水处理设备公司 本公司主要为全国的污水处理厂,大小企业,小区,社区,医院,乡镇卫生院,食品厂,养殖场、屠宰厂、水产养殖、煤矿等等部门提供污水处理方案及解决办法。公司以“专注环保,用心效劳"为中心价值,公司以优质的产品、完善的售后服务,精益求精、开拓进取的务实精神服务于广大用户,我们愿意真诚对待每一用户,希望经过我们的专业程度和不懈努力,重塑青山绿水。 多年来,中能美亚不断秉承以用户需

产品型号:

联系方式

18663629262

产品介绍

大型养鹅场污水处理设备公司

 引言

  畜禽养殖业是我国农业的支柱产业,在维持畜产品稳定供给、提高人民生活水平方面发挥着重要作用.随着畜禽养殖业的集约化、规模化发展,为提高动物生产性能、防治疾病,养殖过程添加了一定量的重金属与抗生素.据统计2006年我国兽用抗生素消耗9.7万吨,占全国抗生素总用量的54%.而不被机体吸收、降解的抗生素排放到环境中,据Zhou等估算我国每年生猪和奶牛养殖场抗生素排放量分别为3080和164 t.而养殖业每年重金属排放铜、锌分别为2397.23 t、4756.94 t.畜禽养殖粪污表现出重金属与抗生素复合污染特征和研究发现畜禽养殖过程抗生素和重金属使用与养殖场及其周边环境抗性基因丰度的提高呈正相关关系.畜禽养殖粪便、污水成为抗性基因的重要蓄积库.抗性基因作为一种新型污染物,可能对公共健康、食品和饮用水安全构成威胁.胡永飞等对162个健康人肠道微生物宏基因组(Metagenome)中的耐药基因进行了深入分析,发现四环素抗性基因的丰度zui高,而人类肠道四环素抗性基因极有可能来自于兽用抗生素的使用以及抗性基因沿食物链的传播.

  2014年世界卫生组织发布的《全球抗生素耐药报告》明确指出抗生素抗性是21世纪公共卫生的严峻挑战,针对动物生产应监督和促进畜禽业的合理用药,并强调了食用动物携带的抗生素抗性及其在食物链上的传播方面数据的缺乏,应加强此方面的研究.我国和主要发达国家推行畜禽养殖废水的生物处理、农田利用等工艺模式,然而畜禽养殖废水携带的抗性基因在此过程的转归,以及抗性基因是否存在沿食物链的传播风险,亟需开展相关研究.

  因此,本研究通过查阅国内外文献,总结归纳了畜禽养殖废水含有的抗生素抗性基因在生物处理、农田利用过程的变化规律,并对今后的研究重点和方向提出建议和展望,以期为揭示抗性基因消减规律,降低畜禽养殖废水抗性基因传播风险提供借鉴.

  2 畜禽养殖废水中抗生素抗性基因分布

  抗性基因根据其抗性机制不同分为3类,分别为降低细胞内抗生素浓度(包括降低细胞通透性或外排)、靶向改变(包括靶向保护或靶向突变)以及抗生素失活.畜禽养殖业抗生素的大量使用引起养殖环境抗性基因丰度的提高,抗性基因与抗生素之间存在相关关系.检测了我国3个省36份猪场环境样品(包括粪便、堆肥、土壤)中的149种抗性基因,结果表明检出的抗性基因对应的抗生素分别为大环内脂林可霉素链阳杀菌素B(macrolidelincosamidestreptogramin B,MLSB)、β内酰胺类、四环素类、喹诺酮氯霉素胺酰醇类、万古霉素等,按抗性机制分类抗生素失活检出率zui高,其后依次为外排和细胞保护机制;而抗性基因丰度与转座酶基因丰度、铜、土霉素含量具有正相关关系.较高的抗性基因丰度可能由于在抗生素的选择压力下抗性基因宿主细菌的增殖,以及某些抗性基因通过移动基因元件( genetic elements)发生基因水平转移(Horizontal gene transfer).

  在畜禽养殖废水方面,四环素类、磺胺类、大环内脂类抗生素的抗性基因研究较多,按抗性机制分类,畜禽养殖废水中抗性基因分布特征详见表 1.)测试了猪场废水中不同机制的四环素抗性基因,发现核糖体保护(靶向保护)抗性基因(tetQ、tetM、tetW、tetO)比外排泵机制抗性基因(tetA、tetB、tetC、tetL)、酶修饰(抗生素失活机制)抗性基因(tetX)丰度高,其在猪场废水中丰度分别为9.25×10-2、5.53×10-2、1.69×10-2和1.32×10-2 copies/16S rRNA.而和)研究也表明tetQ、tetM、tetW、tetO在猪场废水中具有较高的丰度.)研究了猪粪水厌氧发酵土壤生态系统中3种核糖体保护机制的四环素类抗性基因丰度tetQ>tetO>tetW,其中tetQ平均丰度zui高1.84×10-1 copies/16S rRNA.)调查了上海地区猪场和牛场废水中磺胺类和四环素类抗性基因,含量zui高的分别为sulA(108~1010 copies · mL-1)和tetW(106~107 copies · mL-1),而sulIII含量与磺胺类抗生素浓度的相关性较好,这可能与磺胺类抗生素易生物降解性有关;tetM含量与四环素类抗生素浓度相关性较弱.)也指出TC与tet无显著相关性.除四环素类与磺胺类抗生素之外,泰乐菌素是应用zui广泛的兽用抗生素之一,可能引起大环内脂类抗性基因以及MLSB的多重抗性基因丰度的提高.)对3家猪场大环内脂抗性基因erm进行了定量检测,废水中ermB、ermF含量较高(在108~1010 copies · mL-1之间),而ermX在104~106 copies · mL-1范围.通过寡聚糖杂交探针测试方法,发现猪粪水和氧化塘废水中50%的rRNA携带MLSB多重抗性基因.

消毒工艺

  已有研究考察了消毒工艺(包括紫外、臭氧、加氯)处理畜禽养殖废水时对耐药菌的杀灭效果.研究发现,加氯量和臭氧用量分别为30 mg · L-1和100 mg · L-1时,猪场氧化塘废水中细菌总数分别去除了2.2~3.4 log cfu · mL-1和3.3~3.9 log cfu · mL-1,然而林可酰胺、金霉素、磺胺甲恶唑耐药菌对加氯消毒不敏感,而四环素耐药菌对加氯消毒敏感,臭氧对耐药菌的影响并未给出相应结果.加氯对抗万古霉素肠球菌具有较好的灭杀作用.而GomezAlvarez等研究加氯消毒对饮用水中抗性基因的影响,宏基因组数据表明加氯消毒后饮用水中仍含有编码β内酰胺酶(bla)、外排泵等抗生素抗性基因,表明耐受氧化性的细菌同时携带抗生素抗性基因.关于紫外和臭氧对畜禽养殖废水抗性基因的去除研究较为缺乏,研究了紫外灭菌对市政排水抗性基因消减的影响,结果表明紫外强度为249.5 mJ · cm-2时对抗性基因消减效果佳,tetX和16S rRNA分别去除了0.58和0.60 log.Oh等采用模拟实验研究了臭氧对耐药性埃希氏大肠杆菌(Eschericia coli, E. coli)的去除,结果表明臭氧剂量为3 mg · L-1时耐药性E. coli去除了1 log.

  4.4 组合工艺

  畜禽养殖废水通常采用厌氧好氧组合工艺进行处理.Chen等在监测某猪场夏季废水处理工艺对抗性基因去除效果时,发现经过厌氧消化好氧滤池处理,ermB丰度分别降低了1.2 log、0.9 log copies · mL-1,而ermB在出水储存池中已低于检测限;tetG在厌氧、好氧过程分别降低了1.1 log、3.4 log copies · mL-1.对我国东部某猪场废水采用厌氧消化与氧化塘组合工艺去除抗性基因的效果进行了调查,发现tetO、tetQ、tetW有明显去除,丰度从10-1降至10-3 copies/16S rRNA,这可能由于tetQ和tetW宿主细菌多为厌氧菌,而tetO多为好氧菌携带,这些抗性基因无法在厌氧好氧交替环境中维持.而关于生物处理与消毒组合工艺对畜禽废水中抗性基因的去除作用,研究结果非常缺乏.

  5 畜禽养殖废水农田利用对土壤和植物中抗性基因的影响

  由于畜禽养殖废水中富含有机质、氮、磷等营养物质,通常经过厌氧发酵、氧化塘等工艺处理后,作为肥水还田利用,这既节约了处理成本,也促进了养分循环利用,目前我国、美国、欧洲等国家都推行畜禽养殖废水的农田利用.然而,畜禽养殖废水农田利用可能产生抗性基因从养殖场向农田土壤的传播风险.

  土壤是重要的抗性基因储存库,其中主要的抗性基因来源包括土壤中固有的抗性微生物所携带的抗性基因,以及外源进入土壤中抗性微生物所携带的抗性基因,但有关土壤中抗性基因的研究较为缺乏.)指出猪粪施用于农田存在抗性基因的水平转移风险,由于粪源微生物与土壤微生物不同,粪源微生物进入土壤后在几个月中大量消失,但抗性基因可通过水平转移进入土壤本土微生物中,进而引起土壤微生物抗性基因丰度的增加.而研究发现牛粪农田利用引起土壤中抗性基因blaCEP丰度的提高是由于携带抗性基因的假单胞菌(Pseudomonas sp.)和紫色杆菌(Janthinobacterium sp.)的增殖,而这两种细菌来自于土壤,而非粪便引入.粪便农田利用可引起抗性基因丰度提高,但其微生物学机制仍不明确.

  畜禽养殖废水还田利用一定时间内会显著提高土壤中抗性基因丰度.对北京某猪场周边土壤四环素抗性基因进行了定量检测,发现丰度较高的四环素类抗性基因为tetB/P、tetT、tetM、tetO和tetW,其基因拷贝数范围在106~108 copies · g-1 DM,并认为tet抗性基因存在由畜禽养殖向土壤的转移.的研究发现,猪场废水农田利用后土壤中抗性基因tetQ、tetZ和整合子intI1、intI2分别提高了500、9和6、123倍.的研究发现,施用猪场厌氧消化液的土壤中四环素类抗性基因丰度为105~108 copies · g-1,显著高于未施用猪场废水的土壤,而作物类型对抗性基因的丰度影响较小.)研究了抗性基因沿土壤深度的变化,结果表明tetO、tetW、tetM、tetA丰度沿土壤深度在0~80 cm逐渐降低.)发现,饲料中添加磺胺嘧啶显著影响猪粪还田后土壤中sul抗性基因的变化,添加磺胺处理组在第60 dsul1抗性基因丰度降低至10-3 copies/16S rRNA、而sul2升高至10-1 copies/16S rRNA,饲料未添加磺胺嘧啶处理组sul1和sul2均呈现降低趋势,丰度分别为10-6和10-5 copies/16S rRNA研究了施用猪粪的玉米根际土壤与非根际土壤微生物群落变化,结果表明根际土壤sul1和sul2抗性基因略低于非根际土壤,可能与根际环境磺胺嘧啶降解速度快有关,而sul基因常与质粒结合,根际土壤是质粒发生结合转移的热点区域.考察了土壤类型对抗性基因的影响,发现壤土中sul2基因丰度高于砂土.)采用宏基因组文库研究了土壤中不可培养细菌携带的抗性基因,结果表明猪粪还田的土壤携带四环素类、利福平、氨基糖胺类、氯霉素类抗性基因.同未施用畜禽粪便的土壤相比,发现施用猪粪的土壤中大环内脂类抗性基因(ermA、ermB、ermF等)和质粒(IncQ、IncW)丰度有提高.发现携带多重抗性的质粒IncP-1ε在粪便施用后的土壤中扩散.

污水简介

养殖场污水主要包括尿、部分粪便和冲洗水,属高浓度有机污水,而且悬浮物和氨氮含量大。这种未经处理的污水进入自然水体后,使水中固体悬浮物、有机物和微生物含量升高,改变水体的物理、化学和生物群落组成,使水质变坏。污水中还含有大量的病原微生物将通过水体进行扩散传播,危害人畜健康。为了做到经济效益、社会效益和环境效益的三者有机结合,必须对其污水进行有效的治理。

污水特点

养殖污水具有典型的“三高特征”即有机物浓度高COD高达3000-12000mg/l,氨氮高达800-2200mg/l,悬浮物多SS超标数十倍,色度深,并含有大量的细菌,氨氮、有机磷含量高。可生化性好,冲击负荷大。

处理方法

养殖场废水处理方法可简单地归纳为物理处理法、化学处理法和生物处理法,应用广泛的是生物处理法,即主要通过微生物的生命过程把污水中的有机物转化为新的微生物以及简单形式的无机物,从而达到去除有机物的目的。废水自流进入格栅池,其作用是去除污中固体悬浮物,然后废水流至调节池,在调节池内有效地进行水量和水质调节,经提升泵送入缺氧池,在缺氧池,污水经厌氧消化,去除部分污染物质,部分难降解的有机物质在此转化为易降解的物质有利于好氧消化处理。流入好氧池后,填料上吸附的大量活性生物膜,在氧气充足的条件下,生物膜内的菌体大量吞食污水中的有机污染物,进行新陈代谢,去除水中的有机污染物,水中的悬浮物沉淀到污泥斗中,污泥在斗中经过一段时间的浓缩后,定期回流到调节池,剩余污泥排入干化池进行干化和回收处理,出水经兼性塘进行后续处理后达标排放。

大型养鹅场污水处理设备公司

如果你有这方面的需要,咨询,24小时

 

 

潍坊中能美亚环保公司售后服务

     随着公司的不时壮大,屠宰废水处置设备/养殖废水处置设备/煤矿废水处置设备等等领域均有参与销售。公司现如今在黑龙江的哈尔滨,吉林的长春,辽宁省大连市,内蒙包头,宁夏,新疆乌鲁木齐,北京,天津,河北石家庄,河南郑州,洛阳,甘肃兰州,西藏拉萨,四川成都,湖南长沙,湖北武汉,江西南昌,福建福州,青海,云南昆明,广西南宁,广东深圳,广州,江苏杭州,苏州,安徽合肥,山东济南均有销售网络,并且像比较小些的县级市,比如说北京、天津、上海、重庆市。香港、澳门。山西:大同,太原,阳泉,长治,晋中,吕梁,晋城,侯马,临汾,运城,忻州。石家庄、唐山、秦皇岛、邯郸、邢台、保定、张家口、承德、沧州、廊坊、衡水市。辛集、藁城、晋州、新乐、鹿泉、遵化、迁安、武安、南宫、沙河、涿州、定州、安国、高碑店、泊头、任丘、黄骅、河间、霸州、三河、冀州、深州市。呼和浩特、包头、乌海、赤峰、通辽、鄂尔多斯、呼伦贝尔、巴彦淖尔、乌兰察布市。霍林郭勒、满洲里、牙克石、扎兰屯、根河、额尔古纳、丰镇、锡林浩特、二连浩特、乌兰浩特、阿尔山市。辽宁省沈阳、大连、鞍山、抚顺、本溪、丹东、锦州、营口、阜新、辽阳、盘锦、铁岭、向阳、葫芦岛市等多地都有设备投放点及售后服务点。

返回

相关产品

点击这里给我发消息